2005 Vol. 7, No. 18 4061–4064

Synthesis of the ABCD Ring of Gambierol[†]

Hiroki Furuta,‡ Mariko Hase,‡ Ryoji Noyori,§ and Yuji Mori*,‡

Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku, Nagoya 468-8503, Japan, and Department of Chemistry and Research Center for Materials Science, Nagoya University, Chikusa, Nagoya 464-8606, Japan

mori@ccmfs.meijo-u.ac.jp

Received July 16, 2005

ABSTRACT

A fully functionalized ABCD ring moiety of gambierol, a marine polycyclic ether toxin, was synthesized by the use of the oxiranyl anion strategy and reductive cycloetherification of a β , δ -dihydroxy ketone.

Gambierol (1) is a marine polycyclic ether isolated as a neurotoxin from the cultured cells of the ciguatera causative dinoflagellate *Gambierdiscus toxicus*. The structure consists of a trans-fused octacyclic polyether containing three hydroxy groups and a partially skipped triene side chain. The toxin exhibits potent toxicity against mice at $50 \mu g/kg$ (LD₅₀), and the symptoms it causes in mice resemble those shown for ciguatoxins. The characteristic molecular architecture and potent biological activities make gambierol a challenging synthetic target, and in fact, three total syntheses have been accomplished.

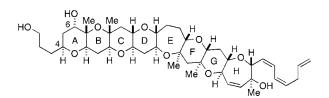


Figure 1. Structure of gambierol (1).

We have previously reported a useful synthetic approach to trans-fused polycyclic ether ring systems.⁵ The strategy

involves the alkylation of the oxiranyl anion generated from an α , β -epoxy sulfone followed by 6-*endo* cyclization to form a 3-keto tetrahydropyran ring. The efficiency and flexibility of this approach stimulated us to synthesize marine polycyclic ethers. We now report the synthesis of the ABCD ring system of 1. Key features of our synthesis are the construction of the carbon backbone of the B and C rings from a single building block and the efficient formation of the A ring by the hydroxy ketone cyclization.

 $^{^{\}dagger}$ This paper is dedicated to the memory of the late Professor Kiyoshi Tanaka.

[‡] Meijo University.

[§] Nagoya University. Visiting Professor at Meijo University.

^{(1) (}a) Satake, M.; Murata, M.; Yasumoto, T. J. Am. Chem. Soc. **1993**, 115, 361–362. (b) Morohashi, A.; Satake, M.; Yasumoto, T. Tetrahedron Lett. **1998**, 39, 97–100.

^{(2) (}a) Yasumoto, T. Chem. Rec. 2001, 1, 228–242. (b) Yasumoto, T.; Murata, M. Chem. Rev. 1993, 93, 1897–1909. (c) Ito, E.; Suzuki, F.; Toshimori, K.; Fuwa, H.; Tachibana, K.; Satake, M.; Sasaki, M. Toxicon 2003, 42, 733–740. (d) Ghiaroni, V.; Sasaki, M.; Fuwa, H.; Rossini, G. P.; Scalera, G.; Yasumoto, T.; Pietra, P.; Bigiani, A. Toxicol. Sci. 2005, 85, 657–665.

^{(3) (}a) Kadota, I.; Park, C.-H.; Ohtaka, M.; Oguro, N.; Yamamoto, Y. Tetrahedron Lett. 1998, 39, 6365–6368. (b) Kadota, I.; Kadowaki, C.; Yoshida, N.; Yamamoto, Y. Tetrahedron Lett. 1998, 39, 6369–6372. (c) Kadota, I.; Ohno, A.; Matsukawa, Y.; Yamamoto, Y. Tetrahedron Lett. 1998, 39, 6373–6376. (d) Fuwa, H.; Sasaki, M.; Tachibana, K. Tetrahedron 2001, 57, 3019–3033. (f) Fuwa, H.; Sasaki, M.; Tachibana, K. Tetrahedron 2001, 57, 3019–3033. (f) Fuwa, H.; Sasaki, M.; Tachibana, K. Org. Lett. 2001, 3, 3549–3552. (g) Sakamoto, Y.; Matsuo, G.; Matsukura, H.; Nakata, T. Org. Lett. 2001, 3, 2749–2752. (h) Cox, J. M.; Rainier, J. D. Org. Lett. 2001, 3, 2919–2922. (i) Kadota, I.; Ohno, A.; Matsuda, K.; Yamamoto, Y. J. Am. Chem. Soc. 2001, 123, 6702–6703. (j) Kadota, I.; Kadowaki, C.; Park, C.-H.; Takamura, H. Sato, K.; Chan, P. W. H.; Thorand, S.; Yamamoto, Y. Tetrahedron 2002, 58, 1799–1816. (k) Kadota, I.; Ohno, A.; Matsuda, K.; Yamamoto, Y. J. Am. Soc. Chem. 2002, 124, 3562–3566. (l) Kadota, I.; Takamura, H.; Sato, K.; Yamamoto, Y. J. Org. Chem. 2002, 67, 3494–3498. (m) Majumder, U.; Cox, J. M.; Rainier, J. D. Org. Lett. 2003, 5, 913–916.

Our studies began with the optically active D ring diol 4, which was prepared from epoxy sulfone 2 and triflate 3 in six steps (Scheme 1).⁶ One-pot triflation and triethylsilylation^{5b}

of diol **4** gave triflate **5** in 94% yield. The triflate was coupled with the oxiranyl anion generated from the racemic *trans*- α,β -epoxy sulfone **6** to afford a mixture of epoxy sulfones **7** composed of two diastereoisomers in 89% yield. Removal of the triethylsilyl group followed by the reaction with magnesium bromide gave a 1:1 mixture of diastereomeric bromo ketones **8**. Subjecting the mixture to cyclization with DBU yielded tricyclic ketone **9** predominantly as one diastereoisomer (dr 94:6) in good yield.⁷

This cyclization has the advantage that neither the stereochemistry of bromo ketones **8**, in turn, nor that of **7** is relevant, because the initial cyclization products undergo facile base-catalyzed equilibration to give the thermodynamically more stable isomer **9** possessing an equatorial C-10 substituent.

Stereocontrolled installation of the C-11 β -axial methyl group was accomplished with trimethylaluminum to provide

the tertiary alcohol **10** in good selectivity (dr 94:6) (Scheme 2).⁸ Removal of the PMB group of **10** with DDQ⁹ gave a

3:2 mixture of an allylic alcohol and the corresponding α,β -unsaturated aldehyde. To avoid handling of the labile aldehyde, the reaction mixture was further treated with sodium borohydride in one pot, yielding the allylic alcohol in 92% yield. The subsequent epoxidation with m-CPBA gave β -epoxy alcohol 11 in high stereoselectivity (dr 96: 4), 10 which was then subjected to SO₃-pyridine oxidation and the Wittig reaction to afford vinyl epoxide 12 in 75% overall yield. The vinyl epoxide underwent a smooth cyclization in a 6-endo manner upon treatment with PPTS at 0 °C to afford tetracyclic vinyl alcohol 13 in 74% yield. 11

Construction of the A ring is a challenging issue, because its α -axial hydroxy group at C-6 and β -equatorial three-carbon side chain at C-4 have to be installed stereoselectively. The reported methods employed asymmetric allylation of an aldehyde^{3a} and reduction of a hydroxy epoxide^{4b} to introduce the C-6 hydroxy group and necessitated an additional carbon—carbon bond-forming reaction and an intramolecular hetero-Michael reaction to construct the A ring. We envisioned that the hydroxy group and the side chain could be constructed by the reaction of an epoxide derived from 13 with a 2-substituted lithiodithiane (Scheme 3).

The homoallylic hydroxy-directed epoxidation¹² of **13** with *tert*-butyl hydroperoxide in the presence of VO(acac)₂¹³

4062 Org. Lett., Vol. 7, No. 18, 2005

^{(4) (}a) Fuwa, H.; Sasaki, M.; Satake, M.; Tachibana, K. *Org. Lett.* **2002**, 4, 2981–2984. (b) Fuwa, H.; Kainuma, N.; Tachibana, K.; Sasaki, M. *J. Am. Chem. Soc.* **2002**, 124, 14983–14992. (c) Kadota, I.; Takamura, H.; Sato, K.; Ohno, A.; Matsuda, K.; Yamamoto, Y. *J. Am. Chem. Soc.* **2003**, 125, 46–47. (d) Fuwa, H.; Kainuma, N.; Tachibana, K.; Tsukano, C.; Satake, M.; Sasaki, M. *Chem. Eur. J.* **2004**, 10, 4894–4909. (e) Kadota, I.; Takamura, H.; Sato, K.; Ohno, A.; Matsuda, K.; Satake, M.; Yamamoto, Y. *J. Am. Chem. Soc.* **2003**, 125, 11893–11899. (f) Johnson, H. W. B.; Majumder, U.; Rainier, J. D. *J. Am. Chem. Soc.* **2005**, 127, 848–849.

^{(5) (}a) Mori, Y.; Yaegashi, K.; Iwase, K.; Yamamori, Y.; Furukawa, H. *Tetrahedron Lett.* **1996**, *37*, 2605–2608. (b) Mori, Y.; Yaegashi, K.; Furukawa, H. *J. Am. Chem. Soc.* **1996**, *118*, 8158–8159.

⁽⁶⁾ Mori, Y.; Hayashi, H. J. Org. Chem. 2001, 66, 8666-8668.
(7) Mori, Y.; Yaegashi, K.; Furukawa, H. Tetrahedron Lett. 1999, 40, 7239-7242.

^{(8) (}a) Nicolaou, K. C.; Hwang, C.-K.; Duggan, M. E. *J. Am. Chem. Soc.* **1989**, *111*, 6682–6690. (b) Nicolaou, K. C.; Nugiel, D. A.; Couladouros, E.; Hwang, C.-K. *Tetrahedron* **1990**, *46*, 4517–4552.

^{(9) (}a) Oikawa, Y.; Yoshioka, T.; Yonemitsu, O. *Tetrahedron Lett.* **1982**, 23, 885–888. (b) Horita, K.; Yoshioka, T.; Tanaka, T.; Oikawa, Y.; Yonemitsu, O. *Tetrahedron* **1986**, 42, 3021–3028.

⁽¹⁰⁾ Sharpless asymmetric epoxidation showed a lower diastereoselectivity (dr 81:19).

⁽¹¹⁾ Nicolaou, K. C.; Prasad, C. V. C.; Somers, P. K.; Hwang, C.-K. J. Am. Chem. Soc. 1989, 111, 5330-5334.

yielded the desired epoxide 14 in high selectivity (dr 93:7). The stereochemistry of the epoxide was determined by the 1H NMR analysis of the acetonide derivative prepared by the reduction of the epoxide with sodium triethylborohydride followed by the reaction with 2,2-dimethoxypropane. The reaction of 15 with the lithiodithiane of benzyl ether 16a under in situ trapping conditions gave an unexpected product 17. 14 To avoid this undesired reaction, the tritylated dithiane 16b was reacted with epoxide 15 to afford the desired hydroxy dithiane 18 in 9% yield. The dithioacetal 18 was transformed into β , δ -dihydroxy ketone 19 in a three-step sequence: removal of the triethylsilyl and trityl groups, pivaloylation of the primary alcohol, and hydrolysis of the dithioacetal group.

Finally, we examined the formation of the A ring by reductive cycloetherification 15 of β , δ -dihydroxy ketone 19. It was hoped that stereochemical control would be achieved by hydride addition to the pyran oxonium ion derived from the hemiketal, which would accept a hydride from the axial direction despite the presence of the α -axial C-6 hydroxy group due to stereoelectronic reasons. 16

The reaction of **19** with triethylsilane in the presence of BF₃•OEt₂ gave the desired product **20** only in 55% yield

Table 1. Reductive Etherification of Dihydroxy Ketone 19

entry	Lewis acid	reaction conditions	20 (%) ^a	21 (%) ^a
1	$\mathrm{BF_3} ext{-}\mathrm{OEt_2}$	−40 °C, 1 h	55	21
2	$TiCl_4$	−40 °C, 1 h	28	5
3	SnCl_4	−78 °C, 40 min	9^{b}	
4	SnCl_4	−40 °C, 30 min	91	

^a Isolated yield. ^b 19 was recovered in 87% yield.

along with the deoxygenated product **21** in 21% yield (Table 1, entry 1). However, **20** was obtained in 91% yield as the sole product when $SnCl_4$ was employed at -40 °C (entry 4). It is noteworthy that dehydration of **19** to an α,β -unsaturated ketone was completely suppressed under the $SnCl_4$ -promoted reduction conditions and that the axial attack of the hydride took place exclusively on the oxonium intermediate.

Removal of the pivaloyl group of **20** with DIBALH, benzylation of the primary and secondary alcohols, and desilylation with TBAF gave the ABCD ring diol **22** of **1** in 83% overall yield.

In summary, we have synthesized the ABCD ring system of gambierol (1) in 20 synthetic transformations from diol 4. Of note in these studies are the use of epoxy sulfone 6 as a multifunctional building block to construct the B and C rings, homoallylic hydroxy-directed stereoselective epoxidation to install the axial alcohol, and reductive

Org. Lett., Vol. 7, No. 18, 2005

⁽¹²⁾ Rao, A. S. In *Comprehensive Organic Synthesis*; Trost, B. M., Ed.; Pergamon: Oxford, 1991; Vol. 7, pp 357–387.

⁽¹³⁾ Sharpless, K. B.; Michaelson, R. J. Am. Chem. Soc. 1973, 95, 6136–6137.

⁽¹⁴⁾ Matsushita, M.; Nagaoka, Y.; Hioki, H.; Fukuyama, Y.; Kodama, M. Chem. Lett. **1996**, 1039–1040.

⁽¹⁵⁾ Nicolaou, K. C.; Hwang, C.-K.; Nugiel, D. A. J. Am. Chem. Soc. **1989**, 111, 4136–4137.

^{(16) (}a) Kirby, A. J. The Anomeric Effect and Related Stereoelectronic Effects at Oxygen; Springer-Verlag: New York, 1983. (b) Deslongchamps, P. Stereoelectronic Effects in Orgnic Chemistry; Pergamon Press: New York, 1983. For examples, see: (c) Morimoto, M.; Matsukura, H.; Nakata, T. Tetrahedron Lett. 1996, 37, 6365–6368. (d) Alvarez, E.; Pérez, R.; Rico, M.; Rodríguez, R. M.; Martín, J. D. J. Org. Chem. 1996, 61, 3003–3016.

cycloetherification of the labile β , δ -dihydroxy ketone. Further investigations directed toward the total synthesis of 1 are underway in our laboratory.

Acknowledgment. This work was supported by Grantin-Aids for Creative Scientific Research (No. 14GS0214) from the Japan Society for the Promotion of Science and for Scientific Research on Priority Areas (No. 17035083) from the Ministry of Education, Culture, Sports, Sciences,

and Technology, Japan, and by the Uehara Memorial Foundation.

Supporting Information Available: Experimental procedures, spectroscopic data, and copies of ¹H and ¹³C NMR spectra of all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL051679K

4064 Org. Lett., Vol. 7, No. 18, 2005